Annals of Fuzzy Mathematics and Informatics Volume x, No. x, (x 2023), pp. 1–x ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

OFMI

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

On some strong irresolute functions defined by betaopen sets

ALI H. KOCAMAN

Received 10 October 2023; Revised 30 December 2023; Accepted 19 January 2024

ABSTRACT. This paper is to introduce and investigate new classes of generalizations of non-continuous functions, to obtain some of their properties and to hold decompositions of strong $\alpha lc\beta$ -irresoluteness and $s\beta lc$ -irresolute in topological spaces.

2020 AMS Classification: 03E72, 54A40

Keywords: β -open set, locally closed set, α -open set, preopen set, strongly $\alpha lc\beta$ -irresolute, $s\beta lc$ -irresolute function.

Corresponding Author: Ali H. Kocaman (akocaman@ohu.edu.tr)

1. INTRODUCTION

In 1989, Ganster and Reilly [1] introduced and studied the notion of LC-continuous functions. Recall the concepts of α -open [2] (resp. locally closed [3], semi-open [4], preopen [5], g-closed [6], rg-closed [7], αlc -[8]) sets and strongly α -irresolute [9] (strongly α -continuous [10] functions in topological spaces. In 1996, Dontchev [11] introduced a stronger form of LC-continuity called contra-continuity. Recently, continuity and irresoluteness of functions in topological spaces have been researched by many mathematicians (See [12, 13]. The aim of this paper is to define and investigate the notions of new classes of functions, namely strongly $\alpha lc\beta$ -irresolute, strongly $slc\beta$ -irresolute, strongly $plc\beta$ -irresolute, strongly $\beta glc\beta$ irresolute, strongly $sglc\beta$ -irresolute, strongly $pglc\beta$ -irresolute, strongly $pglc\beta$ irresolute, strongly $\alpha rglc\beta$ -irresolute, strongly $srglc\beta$ -irresolute, strongly $pglc\beta$ irresolute, strongly $\beta rglc\beta$ -irresolute, strongly $sglc\beta$ -irresolute, strongly $pglc\beta$ irresolute, strongly $\beta rglc\beta$ -irresolute, strongly $srglc\beta$ -irresolute, strongly $pglc\beta$ irresolute, strongly $pglc\beta$ -irresolute, $\alpha\beta lc$ -irresolute, $s\beta lc$ -irresolute, $p\beta lc$ irresolute, $srg\beta lc$ -irresolute, $pg\beta lc$ -irresolute, $\alpha rg\beta lc$ -irresolute, $srg\beta lc$ -irresolute, $prg\beta lc$ -irresolute and to obtain some properties of these functions in topological spaces.

2. Preliminaries

Throughout this paper, spaces always mean topological spaces and $f: X \to Y$ denotes a single valued function of a space (X, τ) into a space (Y, v). Let S be a subset of a space (X, τ) . The closure and the interior of S are denoted by Cl(S) and Int(S), respectively.

Here we recall the following known definitions and properties.

Definition 2.1. A subset S of a space (X, τ) is said to be α -open [2] (resp. semiopen [4], preopen [5], β -open [14] or semi-preopen [15]), if S \subset Int(Cl(Int(S))) (resp. S \subset Cl(Int(S)), S \subset Int(Cl(S)), S \subset Cl(Int(Cl(S)))).

Definition 2.2 ([3]). A subset A of a space (X, τ) is called a *locally closed* (briefly, *LC*) set, if $A = S \cap F$, where S is open and F is closed.

The family of all α -open (resp. semi-open, preopen, β -open) sets in a space (X, τ) is denoted by $\tau^{\alpha} = \alpha(X)$ (resp. SO(X), PO(X), $\beta O(X) = SPO(X)$). It is shown in [2] that τ^{α} is a topology on X. Moreover, $\tau \subset \tau^{\alpha} = PO(X) \cap SO(X) \subset \beta O(X)$.

Definition 2.3. A subset A of a space (X, τ) is called a:

(i) generalized closed set (briefly, g-closed) [6], if $Cl(A) \subset U$, whenever $A \subset U$ and U is open,

(ii) regular generalized closed set (for short, rg-closed) [7], if $Cl(A) \subset U$, whenever $A \subset U$ and U is regular open.

Remark 2.4 ([16]). Closed \rightarrow g-closed \rightarrow rg-closed. In general, none of the implications is reversible.

Definition 2.5 ([8, 17]). A subset A of a space (X, τ) is called:

(i) an αlc-set, if A = S ∩ F, where S is α-open and F is closed,
(ii) an slc-set, if A = S ∩ F, where S is semi-open and F is closed.
(iii) a plc-set, if A = S ∩ F, where S is preopen and F is closed,
(iv) a βlc-set, if A = S ∩ F, where S is β-open and F is closed,
(v) an αglc-set, if A = S ∩ F, where S is α-open and F is g-closed,
(vi) an sglc-set, if A = S ∩ F, where S is semi-open and F is g-closed,
(vii) a pglc-set, if A = S ∩ F, where S is preopen and F is g-closed,
(vii) a pglc-set, if A = S ∩ F, where S is β-open and F is g-closed,
(viii) a βglc-set, if A = S ∩ F, where S is β-open and F is g-closed,
(xix) an αrglc-set, if A = S ∩ F, where S is α-open and F is rg-closed,
(x) an srglc-set, if A = S ∩ F, where S is preopen and F is rg-closed,
(xi) a prglc-set, if A = S ∩ F, where S is preopen and F is rg-closed,
(xi) a βrglc-set, if A = S ∩ F, where S is preopen and F is rg-closed,
(xi) a βrglc-set, if A = S ∩ F, where S is preopen and F is rg-closed,
(xi) a βrglc-set, if A = S ∩ F, where S is preopen and F is rg-closed,
(xi) a βrglc-set, if A = S ∩ F, where S is preopen and F is rg-closed,
(xi) a βrglc-set, if A = S ∩ F, where S is preopen and F is rg-closed,

The family of all α lc-sets (resp. slc-sets, plc-sets, β lc-sets, α glc-sets, sglc-sets, pglc-sets, α glc-sets, srglc-sets, prglc-sets, β rglc-sets) in a space (X, τ) is denoted by α LC(X) (resp. SLC(X), PLC(X), β LC(X), α GLC(X), SGLC(X), PGLC(X), β GLC(X), α RGLC(X), SRGLC(X), PRGLC(X), β RGLC(X)). Moreover, $\alpha(X) \subset \alpha$ LC(X) \subset PLC(X) and PO(X) \subset PLC(X) [17].

Lemma 2.6 ([18]). Let (X, τ) be a topological space. Then we have (1) $\alpha LC(X) \subset \alpha GLC(X) \subset \alpha RGLC(X)$,

(2) $PLC(X) \subset PGLC(X) \subset PRGLC(X)$,

²

- (3) $SLC(X) \subset SGLC(X) \subset SRGLC(X)$,
- (4) $\beta LC(X) \subset \beta GLC(X) \subset \beta RGLC(X).$

Proof. This observes from Definition 2.5.

Definition 2.7. A topological space (X, τ) is called a $T_{1/2}$ -space [6] (resp. T_{rg} -space [19]), if every g-closed (resp. rg-closed) subset of X is closed (resp. g-closed).

Theorem 2.8 ([17]). Let (X, τ) be a $T_{1/2}$ -space. Then we have

(1) $\alpha GLC(X) = \alpha LC(X),$

(2) SGLC(X) = SLC(X),

- (3) PGLC(X) = PLC(X),
- (4) $\beta GLC(X) = \beta LC(X).$

Theorem 2.9 ([17]). Let (X, τ) be a T_{rg} -space. Then we have

(1) $\alpha RGLC(X) = \alpha GLC(X),$

(2) SRGLC(X) = SGLC(X),

(3) PRGLC(X) = PGLC(X),

(4) $\beta RGLC(X) = \beta GLC(X).$

Corollary 2.10 ([20]). Let (X, τ) be a $T_{1/2}$ -space and T_{rg} -space. Then we have

(1) $\alpha RGLC(X) = \alpha GLC(X) = \alpha LC(X),$

(2) SRGLC(X) = SGLC(X) = SLC(X),

- (3) PRGLC(X) = PGLC(X) = PLC(X),
- (4) $\beta RGLC(X) = \beta GLC(X) = \beta LC(X).$

Lemma 2.11 ([17]). Let A and B be subsets of a topological space (X, τ) . Then we have

(1) if $A \in PO(X)$ and $B \in \alpha LC(X)$, then $A \cap B \in \alpha LC(A)$,

(2) if $A \in PO(X)$ and $B \in SLC(X)$, then $A \cap B \in SLC(A)$,

(3) if $A \in SO(X)$ and $B \in PLC(X)$, then $A \cap B \in PLC(A)$,

(4) if $A \in \alpha(X)$ and $B \in \beta LC(X)$, then $A \cap B \in \beta LC(A)$.

Lemma 2.12. Let (X, τ) be a topological space. Then we have

(1) $\alpha(X) = PO(X) \cap \alpha LC(X)$ [21], (2) $\beta(X) = PO(X) \cap \alpha LC(X)$ [21],

(2) $SO(X) = SPO(X) \cap \alpha LC(X)$ [8].

Definition 2.13 ([3]). A topological space (X, τ) is called a *submaximal space*, if every dense subset of X is open in X.

Definition 2.14 ([2]). A topological space (X, τ) is called an *extremally discon* nected space, if the closure of each open subset of X is open in X.

The following theorem follows from the fact that if (X, τ) is a submaximal and extremally disconnected space, then $\tau = \tau^{\alpha} = SO(X) = PO(X) = \beta O(X)$ (See [22, 23]).

Theorem 2.15 ([17]). Let (X, τ) be a submaximal and extremally disconnected space. Then we have

- (1) $\alpha lc\text{-set} \iff slc\text{-set} \iff \beta lc\text{-set}$,
- (2) $\alpha glc\text{-set} \iff sglc\text{-set} \iff \beta glc\text{-set}$,
- (3) $\alpha rglc\text{-set} \iff srglc\text{-set} \iff \beta rglc\text{-set}$.

3. Generalizations of some types strong functions

Definition 3.1 ([15]). A function $f : (X, \tau) \to (Y, v)$ is said to be α -precontinuous, if $f^{-1}(V)$ is preopen set in X for every α -open subset V of Y.

Definition 3.2. A function $f: (X, \tau) \to (Y, v)$ is said to be *irresolute* [24] (resp. semi α lc-continuous [18]), if $f^{-1}(V)$ is semi-open set(resp. α lc-set) in X for every semi-open subset V of Y.

Definition 3.3 ([17]). A function $f : (X, \tau) \to (Y, v)$ is said to be αlc -irresolute, if $f^{-1}(V)$ is αlc -set in X for every αlc -set in V of Y.

Definition 3.4. A function $f: (X, \tau) \to (Y, v)$ is said to be β -irresolute [25] (resp. strongly Semi β -irresolute [26]), if $f^{-1}(V)$ is β -open set (resp. semi-open) in X for every β -open subset V of Y.

Definition 3.5. A function $f: (X, \tau) \to (Y, v)$ is said to be strongly $\alpha lc\beta$ -irresolute (resp. strongly $slc\beta$ -irresolute, strongly $plc\beta$ -irresolute, strongly $\beta lc\beta$ -irresolute), if $f^{-1}(V)$ is β -open set in X for every αlc -set (resp. slc-set, plc-set, βlc -set) V of Y.

Definition 3.6. A function $f : (X, \tau) \to (Y, v)$ is said to be strongly $\alpha glc\beta$ -irresolute (resp. strongly $sglc\beta$ -irresolute, strongly $pglc\beta$ -irresolute, strongly $\beta glc\beta$ -irresolute), if $f^{-1}(V)$ is β -open set in X for every α glc-set (resp. sglc-set, pglc-set, β glc-set) V of Y.

Definition 3.7. A function $f : (X, \tau) \to (Y, \upsilon)$ is said to be *strongly* $\alpha rglc\beta$ -*irresolute* (resp. *strongly* $srglc\beta$ -*irresolute*, *strongly* $prglc\beta$ -*irresolute*, *strongly* $\beta rglc\beta$ -*irresolute*), if $f^{-1}(V)$ is β -open set in X for every α rglc-set (resp. srglc-set, prglc-set, β rglc-set) V of Y.

Definition 3.8. A function $f : (X, \tau) \to (Y, v)$ is said to be $\alpha\beta lc$ -irresolute (resp. $s\beta lc$ -irresolute, $p\beta lc$ -irresolute, βlc -irresolute [17]), if $f^{-1}(V)$ is β lc-set in X for every α lc-set (resp. slc-set, plc-set, β lc-set) V of Y.

Definition 3.9. A function $f: (X, \tau) \to (Y, v)$ is said to be $\alpha g\beta lc$ -irresolute (resp. $sg\beta lc$ -irresolute, $pg\beta lc$ -irresolute, $\beta g\beta lc$ -irresolute), if $f^{-1}(V)$ is β lc-set in X for every α glc-set (resp. sglc-set, β glc-set) V of Y.

Definition 3.10. A function $f : (X, \tau) \to (Y, v)$ is said to be $\alpha rg\beta lc$ -irresolute (resp. $srg\beta lc$ -irresolute, $prg\beta lc$ -irresolute, $\beta rg\beta lc$ -irresolute), if $f^{-1}(V)$ is β lc-set in X for every α rglc-set (resp. srglc-set, prglc-set, β rglc-set) V of Y.

From the definitions, we have the following relationships:

 $\begin{array}{ccc} \mathrm{semi}\ \alpha\text{-irresoluteness} & \longrightarrow \mathrm{semi}\ \alpha\text{lc-continuity} \\ & \downarrow & \downarrow \\ \mathrm{strong}\ \alpha\text{lc}\beta\text{-irresoluteness} & \longrightarrow \mathrm{s}\beta\text{lc-irresoluteness} \\ & \mathrm{Figure}\ 1 \end{array}$

However, the converses of the above implications are not true in general by the following examples.

Example 3.11. Let $X = \{a, b, c\}$ and let a function $f : (X, \tau) \to (Y, v)$ be the identity. If $\tau = \{X, \phi, \{a\}\}$ and $v = \{X, \phi, \{b,c\}\}$ are two topologies on X, then f is semi α lc-continuity and s β lc-irresolute but it is not strongly α lc β -irresolute and Semi α -irresolute.

Example 3.12. Let $X = \{a, b, c\}$ and let a function $f : (X, \tau) \to (Y, v)$ be the identity. If $\tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $v = \{X, \phi, \{a,b\}\}$ are two topologies on X, then f is strongly $\alpha lc\beta$ -irresolute and $s\beta lc$ -irresolute but it is not semi αlc -continuity Semi α -irresolute.

Theorem 3.13. Let X be a topological space and let $(Y_{\lambda})_{\Lambda} \in \Lambda$ be a family of topological spaces. If a function $f: X \to \prod_{\lambda \in \Lambda} Y_{\lambda}$ is strongly $\alpha lc\beta$ -irresolute (resp. strongly $slc\beta$ -irresolute, strongly $plc\beta$ -irresolute, strongly $\beta lc\beta$ -irresolute, strongly $\alpha glc\beta$ -irresolute, strongly $sglc\beta$ -irresolute, strongly $pglc\beta$ -irresolute, strongly $\beta glc\beta$ irresolute, strongly $\alpha rglc\beta$ -irresolute, strongly $sglc\beta$ -irresolute, strongly $pglc\beta$ -irresolute, strongly $\beta rglc\beta$ -irresolute), then $P_{\lambda} \circ f: X \to Y_{\lambda}$ is strongly $\alpha lc\beta$ -irresolute (resp. strongly $slc\beta$ -irresolute, strongly $plc\beta$ -irresolute, strongly $\beta lc\beta$ -irresolute, strongly $\alpha glc\beta$ -irresolute, strongly $sglc\beta$ -irresolute, strongly $pglc\beta$ -irresolute, strongly $strongly sglc\beta$ -irresolute, strongly $sglc\beta$ -irresolute, strongly $pglc\beta$ -irresolute, strongly $\alpha glc\beta$ -irresolute, strongly $sglc\beta$ -irresolute, strongly $pglc\beta$ -irresolute, strongly $\beta rglc\beta$ -irresolute, strongly $sglc\beta$ -irresolute, strongly $pglc\beta$ -irresolute, strongly $\beta rglc\beta$ -irresolute, strongly $sglc\beta$ -irresolute, strongly $pglc\beta$ -irresolute, strongly $\beta rglc\beta$ -irresolute, strongly $\beta rglc\beta$ -irresolute, strongly $\beta rglc\beta$ -irresolute, strongly $sglc\beta$ -irresolute, strongly $\beta rglc\beta$ -irresolute, strongly $\gamma rglc\beta$ -irresolute, strongly $\beta rglc\beta$ -irresolute, strongly $\beta rglc\beta$ -irresolute) for each $\lambda \epsilon \Lambda$, where P_{λ} is the projection of $\Pi_{\lambda \in \Lambda} Y_{\lambda}$ onto Y_{λ} .

Proof. Suppose f is strongly $\alpha lc\beta$ -irresolute and let V_{λ} be any αlc -set of Y_{λ} for each $\lambda \in \Lambda$. Since P_{λ} is continuous and open, it is αlc -irresolute [17]. Then $P_{\lambda}^{-1}(V_{\lambda})$ is αlc -set in $\prod_{\lambda \in \Lambda} Y_{\lambda}$. Since f is strongly $\alpha lc\beta$ -irresolute, $f^{-1}(P_{\lambda}^{-1}(V_{\lambda})) = (P_{\lambda} \circ f)^{-1}(V_{\lambda})$ is an β -open set in X. Thus $P_{\lambda} \circ f$ is strongly $\alpha lc\beta$ -irresolute. Similarly, the other assertions are proved.

Theorem 3.14. If $f : (X, \tau) \to (Y, \upsilon)$ is strongly $\alpha lc\beta$ -irresolute (resp. strongly $slc\beta$ -irresolute, strongly $plc\beta$ -irresolute, strongly $\alpha glc\beta$ -irresolute, strongly $plc\beta$ -irresolute, strongly $\alpha glc\beta$ -irresolute, strongly $pglc\beta$ -irresolute, strongly $\alpha glc\beta$ -irresolute, strongly $pglc\beta$ -irresolute, strongly $\alpha glc\beta$ -irresolute, strongly $pglc\beta$ -irresolute, strongly $\beta glc\beta$ -irresolute, strongly $\alpha glc\beta$ -irresolute, strongly $pglc\beta$ -irresolute, strongly $\beta glc\beta$ -irresolute, strongly $\alpha glc\beta$ -irresolute, strongly $pglc\beta$ -irresolute, strongly $\alpha glc\beta$ -irresolute, strongly $pglc\beta$ -irresolute, strongly $\alpha glc\beta$ -irresolute, strongly $pglc\beta$ -irresolute, strongly $\beta glc\beta$ -irresolute, strongly $\alpha glc\beta$ -irresolute,

Proof. Suppose f is strongly $\alpha lc\beta$ -irresolute and let V be any αlc -set of Y for each $\lambda \in \Lambda$. Since f is strongly $\alpha lc\beta$ -irresolute, $f^{-1}(V)$ is a β -open in X. Since A is α -open in X, $(f/_A)^{-1}(V) = A \cap f^{-1}(V)$ is a β -open in A by Lemma 2.2 (4) in [17]. Then $f/_A$ is strongly $\alpha lc\beta$ -irresolute. The other assertions are similarly proved. \Box

Theorem 3.15. Let $f: X \to Y$ be a function and $g: Y \to Z$ be strongly $\alpha lc\beta$ irresolute (resp. strongly $slc\beta$ -irresolute, strongly $plc\beta$ -irresolute, strongly $\beta lc\beta$ irresolute, strongly $\alpha glc\beta$ -irresolute, strongly $sglc\beta$ -irresolute, strongly $pglc\beta$ -irresolute, strongly $\beta glc\beta$ -irresolute, strongly $\alpha rglc\beta$ -irresolute, strongly $srglc\beta$ -irresolute, strongly $prglc\beta$ -irresolute, strongly $\beta rglc\beta$ -irresolute) function. If f is β -irresolute, then the composition $g \circ f: X \to Z$ is strongly $\alpha lc\beta$ -irresolute (resp. strongly $slc\beta$ -irresolute, strongly $plc\beta$ -irresolute, strongly $\beta lc\beta$ -irresolute, strongly $\alpha glc\beta$ -irresolute, strongly $sglc\beta$ -irresolute, strongly $pglc\beta$ -irresolute, strongly $\alpha rglc\beta$ -irresolute, strongly $srglc\beta$ -irresolute, strongly $prglc\beta$ -irresolute, strongly $prglc\beta$ -irresolute, strongly $prglc\beta$ -irresolute).

Proof. Let g be strongly $\alpha lc\beta$ -irresolute. Suppose f is β -irresolute and let W be any αlc -set subset of Z. Since g is strongly $\alpha lc\beta$ -irresolute $g^{-1}(W)$ is β -open in Y. Since f is β -irresolute, $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$ is β -open in X. Then $g \circ f$ strongly $\alpha lc\beta$ -irresolute. The other assertions are similarly proved.

Theorem 3.16. Let $f: X \to Y$ be a function and $g: Y \to Z$ be α lc-irresolute (resp. slc-irresolute, plc-irresolute, β lc-irresolute, α glc-irresolute, sglc-irresolute, β glc-irresolute, β glc-irresolute, α rglc-irresolute, srglc-irresolute, pglc-irresolute, β glc-irresolute, α glc-irresolute, srongly slc β -irresolute, β rglc-irresolute) function. If f is strongly α lc β -irresolute (resp. strongly slc β -irresolute, strongly glc β -irresolute, strongly α glc β -irresolute, strongly sglc β -irresolute, strongly β glc β -irresolute, strongly α glc β -irresolute, strongly sglc β -irresolute, strongly pglc β -irresolute, strongly α glc β -irresolute, strongly sglc β -irresolute, strongly α glc β -irresolute, strongly slc β -irresolute, strongly α glc β -irresolute, strongly slc β -irresolute, strongly α glc β -irresolute, strongly slc β -irresolute, strongly α glc β -irresolute, strongly slc β -irresolute, strongly α glc β -irresolute, strongly slc β -irresolute, strongly α glc β -irresolute).

Proof. Let g be α lc-irresolute. Suppose f is strongly α lc β -irresolute and let W be any α lc-set subset of Z. Since g is α lc-irresolute, $g^{-1}(W)$ is α lc-set in Y. Since f is strongly α lc β -irresolute, $(gof)^{-1}(W)=f^{-1}(g^{-1}(W))$ is β -open in X. Then $g \circ f : X \to Z$ is strongly α lc β -irresolute. The other assertions are similarly proved. \Box

Theorem 3.17. Let $f: X \to Y$ be a function and $g: Y \to Z$ be strongly α lcirresolute (resp. Strongly slc-irresolute, strongly plc-irresolute, strongly β lc-irresolute, strongly α glc-irresolute, strongly sglc-irresolute, strongly pglc-irresolute, strongly β glcirresolute, strongly α rglc-irresolute, strongly srglc-irresolute, strongly prglc-irresolute, strongly β rglc-irresolute) function. If f is α -precontinuous, then the composition $g \circ f: X \to Z$ is strongly β lc-preirresolute (resp. strongly slc-preirresolute, strongly plc-preirresolute, strongly β lc-preirresolute, strongly α glc-preirresolute, strongly α glcpreirresolute, strongly pglc-preirresolute, strongly β glc-preirresolute, strongly α glcpreirresolute, strongly α glc-preirresolute, strongly β glc-preirresolute, strongly α glcpreirresolute, strongly α glc-preirresolute, strongly β glc-preirresolute, strongly α glcpreirresolute, strongly β glc-preirresolute, strongly β glc-preirresolute, strongly α glcpreirresolute, strongly β glc-preirresolute, strongly β glcpreirresolute, strongly β glc-preirresolute, strongly β glcpreirresolute, strongly β glc-preirresolute, strongly β glcpreirresolute, strongle β glcpreirre

Proof. Let g be strongly α lc-irresolute. Suppose f is α -precontinuous and let W be any α lc-set subset of Z. Since g is strongly α lc-irresolute, $g^{-1}(W)$ is α -open in Y. Since f is α -precontinuity, $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$ is preopen in X. Then $g \circ f$ strongly α lc-preirresolute. The other assertions are similarly proved. \Box

Theorem 3.18. Let (X, τ) be a $T_{1/2}$ -space and let $f : (X, \tau) \to (Y, \upsilon)$ be a function. Then we have

- (1) strongly $\alpha glc\beta$ -irresolute \iff strongly $\alpha lc\beta$ -irresolute,
- (2) strongly sglc β -irresolute \iff strongly slc β -irresolute,
- (3) strongly $pglc\beta$ -irresolute \iff strongly $plc\beta$ -irresolute,
- (4) strongly $\beta glc\beta$ -irresolute \iff strongly $\beta lc\beta$ -irresolute.

Proof. It is obvious from Theorem 2.8.

Theorem 3.19. Let (X, τ) be a $T_{1/2}$ -space and let $f : (X, \tau) \to (Y, \upsilon)$ be a function. Then we have

- (1) $\alpha g\beta lc$ -irresolute $\iff \alpha\beta lc$ -irresolute,
- (2) $sg\beta lc$ -irresolute $\iff s\beta lc$ -irresolute,
- (3) $pg\beta lc$ -irresolute $\iff p\beta lc$ -irresolute,
- (4) $\beta g\beta lc$ -irresolute $\iff \beta lc$ -irresolute.

Proof. It is obvious from Theorem 2.8

Theorem 3.20. Let (X, τ) be a T_{rs} -space and let $f : (X, \tau) \to (Y, \upsilon)$ be a function. Then we have

- (1) strongly $\alpha rglc\beta$ -irresolute \iff strongly $\alpha glc\beta$ -irresolute.
- (2) strongly srglc β -irresolute \iff strongly sglc β -irresolute,
- (3) strongly $prglc\beta$ -irresolute \iff strongly $pglc\beta$ -irresolute,
- (4) strongly $\beta rglc\beta$ -irresolute \iff strongly $\beta glc\beta$ -irresolute.

Proof. It is obvious from Theorem Theorem 2.9

Theorem 3.21. Let (X, τ) be a T_{rg} -space and let $f : (X, \tau) \to (Y, v)$ be a function. Then we have

- (1) $\alpha rg\beta lc$ -irresolute $\iff \alpha g\beta lc$ -irresolute,
- (2) $srg\beta lc$ -irresolute $\iff sg\beta lc$ -irresolute,
- (3) $prg\beta lc$ -irresolute $\iff pg\beta lc$ -irresolute,
- (4) $\beta rg\beta lc$ -irresolute $\iff \beta g\beta lc$ -irresolute.

Proof. It is obvious from Theorem Theorem 2.9

Corollary 3.22. Let (X, τ) be a $T_{1/2}$ -space and T_{rg} -space. Let $f : (X, \tau) \to (Y, v)$ be a function. Then we have

(1) strongly $\alpha rglc\beta$ -irresolute \iff strongly $\alpha glc\beta$ -irresolute \iff strongly $\alpha lc\beta$ -irresolute,

(2) strongly $srglc\beta$ -irresolute \iff strongly $sglc\beta$ -irresolute \iff strongly $slc\beta$ -irresolute,

(3) strongly $prglc\beta$ -irresolute \iff strongly $pglc\beta$ -irresolute \iff strongly $plc\beta$ -irresolute,

(4) strongly $\beta rglc\beta$ -irresolute \iff strongly $\beta glc\beta$ -irresolute \iff strongly $\beta lc\beta$ -irresolute.

Proof. It is obvious from Corollary 2.10.

Corollary 3.23. Let (X, τ) be a $T_{1/2}$ -space and T_{rg} -space. Let $f : (X, \tau) \to (Y, \upsilon)$ be a function. Then we have

- (1) $\alpha rg\beta lc$ -irresolute $\iff \alpha g\beta lc$ -irresolute $\iff \alpha \beta lc$ -irresolute,
- (2) $srg\beta lc$ -irresolute \iff $sg\beta lc$ -irresolute \iff $s\beta lc$ -irresolute,
- (3) $prg\beta lc$ -irresolute $\iff pg\beta lc$ -irresolute $\iff p\beta lc$ -irresolute,

(4) $\beta rg\beta lc$ -irresolute $\iff \beta g\beta lc$ -irresolute $\iff \beta lc$ -irresolute.

Proof. It is obvious from Corollary 2.10.

Theorem 3.24. Let (X, τ) be a submaximal and extremally disconnected space and let $f : (X, \tau) \to (Y, v)$ be a function. Then we have

(1) strongly $\alpha lc\beta$ -irresolute \iff strongly $slc\beta$ -irresolute \iff strongly $plc\beta$ -irresolute \iff strongly $\beta lc\beta$ -irresolute,

(2) strongly $\alpha glc\beta$ -irresolute \iff strongly $sglc\beta$ -irresolute \iff strongly $pglc\beta$ -irresolute \iff strongly $\beta glc\beta$ -irresolute,

(3) strongly $\alpha rglc\beta$ -irresolute \iff strongly $srglc\beta$ -irresolute \iff strongly $prglc\beta$ -irresolute \iff strongly $\beta rglc\beta$ -irresolute.

Proof. It is obvious from Theorem 2.15.

Theorem 3.25. Let (X, τ) be a submaximal and extremally disconnected space and let $f : (X, \tau) \to (Y, \upsilon)$ be a function. Then we have

(1) $\alpha\beta$ lc-irresolute $\iff s\beta$ lc-irresolute $\iff p\beta$ lc-irresolute $\iff \beta$ lc-irresolute, (2) $\alpha g\beta$ lc-irresolute $\iff sg\beta$ lc-irresolute $\iff \beta g\beta$ lc-irresolute $\iff \beta g\beta$ lc-irresolute.

(3) $\alpha rg\beta lc$ -irresolute $\iff srg\beta lc$ -irresolute $\iff \beta rg\beta lc$ -irresolute.

Proof. It is obvious from Theorem 2.15.

Theorem 3.26. For a function $f: (X, \tau) \to (Y, v)$ the following hold;

(1) f is semi α -irresolute if and only if strongly $\alpha lc\beta$ -irresolute and semi αlc -continuous,

(2) f is strongly semi β -irresolute if and only if strongly $\alpha lc\beta$ -irresolute and strongly αlc - irresolute,

(3) f is irresolute if and only if strongly $\alpha lc\beta$ -irresolute and strongly αlc - irresolute.

Proof. It is obvious from Theorem 2.15.

References

- M. Ganster and I. L. Reilly, Locally closed sets and LC-continuous functions, Int. J. Math. Math. Sci. 12 (1989) 417–424.
- [2] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965) 961–970.
- [3] N. Bourbaki, Elements of mathematics, General Topology, Part 1, Paris, Hermann, Addison-Wesley Publishing Co., Reading, Mass. 1966.
- [4] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963) 36–41.
- [5] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982) 47–53.
- [6] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19 (2) (1970) 89–96.
- [7] N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math. J. 33 (1993) 211–219.
- [8] B. Al-Nashef, A decomposition of α -continuity and semi-continuity, Acta. Math. Hungar. 97 (2002) 115–120.
- [9] G. Lo Faro, On strongly α -irresolute mappings, Indian J. Pure Appl. Math. 1 (1987) 146–151.
- [10] Y. Beceren, On strongly α-continuous functions, Far East J. Math. Sci. (FJMS) Special Vol. Part I (2000) 51–58.
- [11] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Int. J. Math. Math. Sci. 19 (2) (1996) 303–310.
- [12] A. I. El-Maghrabi and M. A. Al-Juhani, Further properties on M-continuity, J. Egypt. Math. Soc. 22 (1) (2014) 63–69.

- [13] Ali M. Mubarki, Massed M. Al-Rshudi and Mohammad A. Al-Juhani, β^{*}-open sets and β^{*}continuity in topological spaces, Journal of Taibah University for Science 8 (2014) 142–148.
- [14] M. E. Abd El-Monsef, S. N. El-Deepand and R. A. Mahmuoud, β-open sets and β-continuous mapping, Bull. Fac. Sci. Assiut Univ. 12 (1983) 77-90.
- [15] D. Andrijević, Semi-preopen sets, Mat. Vesnik 38 (1986) 24–32.
- [16] T. Noiri, Mildly normal spaces and some functions, Kyungpook Math. J. 36 (1996) 183–190.
- [17] Y. Beceren, T. Noiri, M. C. Fidancı and K. Arslan, On some generalizations of locally closed sets and lc-continuous functions, Far East J. Math. Sci. (FJMS) 22 (3) (2006) 333–344.
- [18] Y. Beceren and T. Noiri, Some functions defined by semi-open and β -open sets, Chaos Solitons Fractals 36 (2008) 1225–1231.
- [19] I. Arockia Rani and K. Balachandran, On regular generalized continuous maps in topological spaces, Kyungpook Math. J. 37 (1997) 305–314.
- [20] A. H. Kocaman, S. Yüksel and A. Açıkgöz, On some strongly functions defined by α-open, Chaos Solitons Fractals 39 (2009) 1346–1355.
- [21] G. Aslım and Y. Ayhan, Decompositions of some weaker forms of continuity, cta Math. Hungar. 105 (2004) 85–91.
- [22] D. S. Janković, On locally irreducible spaces, Ann. Soc. Sci. Bruxelles Sér. I 97 (1983) 59–72.
- [23] A. A. Nasef and T. Noiri, Strong forms of faint continuity, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 19 (1998) 21–28.
- [24] S. G. Crossley and S. K. Hildebrand, Semi-topological properties, Fund. Math. 74 (1972) 233–254.
- [25] R. A. Mahmoud and M. E. Abd El-Monsef, R. A. Mahmoud and M. E. Abd El-Monsef, β -irresolute and β -topological invariant. Proc. Pakistan Acad Sci. 27 (1990) 285–296.
- [26] Y. Beceren, strongly semi β -irresolute functions and semi α -preirresolute functions, Far East J. Math. Sci. (FJMS) 22 (2001) 973–983.

<u>ALI H. KOCAMAN</u> (akocaman@ohu.edu.tr)

Nigde Omer Halisdemir University, Faculty of Sciences, Department of Mathematics. Nigde, 51100 Türkiye